On localization in holomorphic equivariant cohomology

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the localization formula in equivariant cohomology

We give a generalization of the Atiyah–Bott–Berline–Vergne localization theorem for the equivariant cohomology of a torus action. We replace the manifold having a torus action by an equivariant map of manifolds having a compact connected Lie group action. This provides a systematic method for calculating the Gysin homomorphism in ordinary cohomology of an equivariant map. As an example, we reco...

متن کامل

On the localization theorem in equivariant cohomology

We present a simple proof of a precise version of the localization theorem in equivariant cohomology. As an application, we describe the cohomology algebra of any compact symplectic variety with a multiplicity-free action of a compact Lie group. This applies in particular to smooth, projective spherical varieties. 1 A precise version of the localization theorem Let X be a topological space with...

متن کامل

Equivariant Cohomology and Localization Formula in Supergeometry

LetG be a compact Lie group. LetM be a smoothG-manifold and V → M be an oriented G-equivariant vector bundle. One defines the spaces of equivariant forms with generalized coefficients on V and M . An equivariant Thom form θ on V is a compactly supported closed equivariant form such that its integral along the fibres is the constant function 1 on M . Such a Thom form was constructed by Mathai an...

متن کامل

Holomorphic Equivariant Cohomology via a Transversal Holomorphic Vector Field * Huitao Feng

In this paper an analytic proof of a generalization of a theorem of Bismut ([Bis1, Theorem 5.1]) is given, which says that, when v is a transversal holomorphic vector field on a compact complex manifoldX with a zero point set Y , the embedding j : Y → X induces a natural isomorphism between the holomorphic equivariant cohomology of X via v with coefficients in ξ and the Dolbeault cohomology of ...

متن کامل

2 00 3 Holomorphic Equivariant Cohomology via a Transversal Holomorphic Vector Field ∗

In this paper an analytic proof of a generalization of a theorem of Bismut ([Bis1, Theorem 5.1]) is given, which says that, when v is a transversal holomorphic vector field on a compact complex manifoldX with a zero point set Y , the embedding j : Y → X induces a natural isomorphism between the holomorphic equivariant cohomology of X via v with coefficients in ξ and the Dolbeault cohomology of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Central European Journal of Mathematics

سال: 2012

ISSN: 1895-1074,1644-3616

DOI: 10.2478/s11533-012-0054-2